FLOW DYNAMICS AND HEAT TRANSFER
IN A ROTATING SLOT CHANNEL

O. N. Ovchinnikov and E, M, Smirnov UDC 532,516

An analysis is presented of the change in the flow caused by the rotation, as well as of the
effects of the flow change on the heat transfer.

There is a need to improve the cooling of rotors in electrical machines and of gas-turbine blades, and
an important part in research in this area is played by the determination of flow characteristics and heat-
transfer parameters in a rotating channel whose axis is perpendicular to the axis of rotation, The need for
such research is due to the marked effects of the rotation on the hydraulic resistance of the channel and on
the heat-transfer rate. Here we consider the flow of a viscous liquid in a rotating channel of simple shape
formed by two parallel planes; this defines the major effects arising from the rotation and gives a quantitative
evaluation of the effects of the rotation on the resistance and heat-transfer rate,

Consider a prismatic slot channel of constant height 2h that rotates uniformly with an angular velocity
w about an axis perpendicular to the planes forming the slot.

We introduce a Cartesian coordinate system Oxyz rigidly coupled to the channel and oriented in such a
way that the Oy axis lies along the axis of rotation, while the Oz axis is parallel to the side walls of the channel
and is directed along the flow, and the origin lies in the median plane of the channel,

We first consider the dynamic problem. We assume that the flow has stabilized (the relative-velocity
vector is not dependent on the z coordinate), and we restrict consideration to the flow in the central part of
the channel far from the side walls, We assume that the velocity vector is parallel to the planes forming the
slot at each point in this region and therefore is a function of the y coordinate only,

Thus, the Navier—Stokes equations for the rotating Oxyz coordinate system take the form
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Here u and w are the projections of the velocity vector on the x and z axes, respectively, while 1=II(x, z) is
the modified pressure, which is defined by

2
n="= ——(~°—(x2+22).
[ 2

It follows from (1) that II should be a linear function of x and z, i.e.,

I(x, 2) =11, -+ ax - 2.
The boundary conditions at the upper and lower walls are put in the usual form:
u=w=0 at y=xh (2)
The presence of the side walls is incorporated by setting the liquid flow as zero for any section of the

channel parallel to the Oyz plane:

h
{uly)dy =0. 3)
—h
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- Fig. 1. Curves for the longitudinal component of the
veloecity: 1) y=0 (y=1); 2) 2; 3) 3; 4) 4; 5) 8; 6) 16,

Fig. 2, Curves for the transverse component of the ve-
locity: 1) y=1; 2) 2; 3) 3; 4) 4; 5) 8; 6) 186,

The result is normalized by introducing the flow~rate velocity wy, which is defined as the ratio of the
flow rate Q along the z axis per unit width of channel to the height of the latter:
h

_.e _ vy )
@ =, o jW(y)dy-

~h
The solution to (1) that satisfies (2)-(4) can be put as

w/w, = C{A[sh (¥§) sin (yE) — shysin y] -+ B [ch () cos ty&) — chycos 1}, (5)
uj/w, = C[sin 2y — sh 2y — A ch (yE) cos (E) -+ B sh (YE) sin (pE)], (6)

where
E=y/h; A=2(chysiny—shycosy—2yshysiny);
B =2(shycosy-+ chysiny—2ychycosy);

o 2
‘V = VRem; Reﬁl = 0)\]’_1; C‘ = 4?/(A2 + 2), (7)

Figure 1 shows the distribution for the longitudinal component of the velocity w/wy, as caleulated from
{5) for several values of y; it is clear that the Coriolis force has only a slight influence on the distribution
of this component if v is small, and the distribution for y<1 is essentially that for laminar flow in a planar
immobile channel. This follows also directly from (5) if written for small values of v:

w 3 v
L2 e (3586 1058 - 81E2— 11) | — O (+¥).
[ 2 T (35— 1058 + 81t )]. (49

W, 2 '

In the range 1<vy<4 there is a change in the structure of the profile, particularly flattening at the core;
in the range v > 8 the value of w/w; is virtually constant across the channel, apart from a small area near the
walls. The speed at the core of the flow in that case is given approximately by

w 1
— 1 —_—
w, * 2y

Figure 2 shows distributions for the transverse component of the velocity derived from (6) of several

values of 7.

If v is small, (6) can be put as

u 2
2 X (e B — 1) O(VY). 8)
o 20(- g )+ 0(%

It follows from (8) that u(O)/W0= —'y? 20; an interesting point is that the analogous value for the transverse
velocity component at the center of a circular channel is —2/24 [1]. The absolute value of u(0)/w, at first
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Fig. 3. Friction, transverse circulation flow, coordinates
of the center of the transverse vortex, and Nusselt number
as functions of the rotation parameter.

increases withy, but a turning point occurs at y= 3,4, There is a substantial change in the distribution of
u/w, in the range 3.4<y<8, particularly flattening at the core; the value of u/w, is virtually constant for

v > 8 throughout much of the cross section, the approximate value being —0.5/(y —1); an exception is consti~
tuted by the region near the walls, where the velocity distribution is typical of an Eckman layer at a solid

boundary [2]:
ujw, = exp[— p(l — &) sin [y (1 —E)], ©)
w/wy =1 —exp [— y (1 —E)] cos [y (1 —E)], (10)
where (@) and (10) are derived from (5) and (6) as y—,

Figure 3 shows the ¥ dependence of the coordinate £; of the point at which the component u (in the upper
half of the channel) changes sign; (8) readily shows that for y<<1 we have &,=v0.2, which coincides with the
center of the eddy representing the secondary flow for channels of circular [1] or elliptical [3] cross section.
Further, £, increases with y and tends asymptotically to unity for y—-,

Interest attaches to the dimensionless flow rate Q* circulating in a cross section:

=_fﬂdg= q_“(ﬁag.

W,

Figure 3 shows Q* as a function of y; the peak value of Q* =0,077 occurs for v= 3.4, so the flow rate
for the circulation in the cross section does not exceed 8% of the flow in the main direction for any value of ¥.

The resistance is characterized by the stress on the wall:

cm 3P 4w J
N
We take the ratio of these quantities for the rotating channel ¢ ) and the immobile one 7, for a given w, to get
T, _ 8y*(sh2y —sin2y) 1)
T, 3(A2+By
where 3vow,
Ty = — o

Figure 3 shows Tw/To as a function of v; 7, ~7) if y is less than 1, while for v > 4 the result is

To/T 2 V3 (y— 1). . (12)

We now consider the heat transfer in a rotating slot channel. We assume that all physical characteristics
of the liquid are constant. Steady-state heat transfer applies, and the temperature distribution is independent
of the x coordinate, The energy equation can then be put as

oT A T T ou \2 [ dw \?
w = L el e .
0z pcp(ay2+azz)'v[(0y)+( ay)] a3)
From (5) and (6) we get that a particular solution to this equation that satisfies the boundary conditions
at the wall of the channel

T(xh=T,=T,+0z, T,=const, (14)
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can be put as
apcw,h? vpw?
T—Ty= 222 g ¢, )+ 220 6,8 v) (15)

0, = —5—[(%—1—3) chycosy +(A — %) sh y sin y —E¥ A sh y sin y-- B chy cos v)—-—'—i—ch(v&) cos (yE) -{—:%sh(vg) sin (vé)}; (16)
¥

- . _
0, = m fch 29 4+ cos 2y — ch (298) — cos (29E)]. (17)

The solution (15) corresponds to a developed temperature distribution provided that the density of the
heat flux is constant on the planes forming the slot; there are two components, The first on the left in (15)
is due to convective heat transfer, while the second is due to the heat arising from the dissipation of mechan-
ical energy when the liquid moves along the channel,

Equations (16) and (17) simplify considerably if v is small:
0, = [E2(6 —E&») —5]/8 + O (v¥),
3 18)
8, = T(l —E - 0(Y.
If v i$ very large (y — =),
B> @ —1)2, 8, ={l—exp[—2y(1 —E)}/2. (19)

Coniparison of (18) and (19) shows that in this case the rotation has comparatively little effect on the
convective heat transfer but causes a considerable flattening of the dissipative temperature distribution in
the core. Figure 4, which shows results from (16) and (17) for v of 0, 4, and 16, illustrates this.

We now calculate the Nusselt number for the case where the convective term in (15) exceeds thedissi-
pative one substantially; the definition

Nu = 2hg, /A (T, — T')

and the heat balance for the direction of the z axis imply that

1
Nu =2 / j Sw 4 (20)

Wy
1]
Figui'e 3 shows results from (20); the behavior of ‘rw/‘ro and Nu alters considerably when vy is large,
since T,/T) increases monotonically with v, whereas the Nusselt number tends to a limiting value of 6.

NOTATION

A, B, C, constants of integration; h, halfheight of channel; x, y, z, Cartesian coordinate system; II,
modified pressure; u, w, velocity components along the x and z axes; Q, flow rate in the z direction; w;, mean
flow-rate velocity; «, 8, I§), constants in the pressure function; vy, rotation parameter; ¢, dimensionless co-
ordinate; v, kinematic viscosity; p, density; 7,,, shear stress on wall of rotating channel; 7, stress on fixed
wall; T, temperature; qw, heat flux; A, thermal conductivity of liquid; Cp» specific heat at constant pressure;
Tw, Tm, wall temperature and mean-mass temperature, respectively; Nu, Nusselt number,
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INFLUENCE OF INHOMOGENEOUS ELECTRIC
AND MAGNETIC FIELDS ON INTERNAL MASS
TRANSFER IN CAPILLARY-POROUS BODIES

A. L. Panasyuk, M. 8, Panchenko, UDC 536,423:537,523.3
V. M, Starov, and N. V. Churaev

Equations are derived for mass transfer in inhomogeneous electric and magnetic fields, Ex-
perimental results are given in support of the theoretical conclusions.

It has been shown experimentally {1, 2] that inhomogeneous electric and magnetic fields have an appre-
ciable influence on internal mass~transfer processes in porous bodies, We wish to examine some possible
physical mechanisms of this phenomenon,

It is generally known that dipolar molecules in an inhomogeneous electric field with gradient VE are
acted upon by a force

f = p.vE, dyn. ey

Under the action of this force dipolar molecules acquire a velocity component in the direction of increasing
values of VE with a magnitude

U = Df/RT, em/sec. 2)

To the diffusion flux q, of vapor molecules in this case is added a convective flux e =UC. The total
flux is then

dc p.CyE
== e = — D l e . 3
9= td dx [ +kT(—dC/dx)] @)
It is evident from this equation that for VE > 0 the vapor transfer rate increases. The influence of the
field is particularly appreciable for small vapor-pressure gradients, such that q.>qy, and for molecules with
a large dipole moment.

An inhomogeneous field also affects a liquid dielectric, pulling it into the zone of greater field inhomo-
geneity. The force acting on unit volume of the dielectric is
e—1
8
Under the action of the force per unit volume, Pg, viscous flowis analogous to flow at a constant hydrostatic
pressure gradient VP. For example, in the case of a cylindrical capillary of radius r the mass flux can be
written in the form

P, = v (E?), dyn/cm®, 4)

pr? (e—1Dv(EY
=q+q = |ypEZDVIED
9=q 4 8n [V + 8n } . (5)

Here the first term expresses the mass flux under the influence of the hydrostatic pressure gradient VP, and
the second term under the influence of the field gradient VE,
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